- Home
- Hydraulic Components
- Axial Piston Pumps
- HL-A2FO HYDRAULIC PUMPS
HL-A2FO HYDRAULIC PUMPS
The HL-A2FO fixed displacement pump is engineered for maximum efficiency and durability. Designed with a bent-axis axial piston rotary group, it provides reliable hydrostatic power transmission in open circuits. Whether you’re in construction, industrial automation, or heavy machinery, this pump delivers consistent, powerful performance.
Geometric displacement | Vg | cm³/rev | 10.3 | |
Max. rotation speed | nnom | rpm | 3150 | |
nmax | rpm | 6000 | ||
Outlet flow | qv | L/min | 32 | |
Power | Δp=350 bar | P | kW | 19 |
Δp=400 bar | P | kW | 22 | |
Torque | Δp=350 bar | T | Nm | 57 |
Δp=400 bar | T | Nm | 66 | |
Rotary stiffness | c | kNm/rad | 0.92 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0004 | |
Max. angular acceleration | α | rad/s² | 5000 | |
Case volume | V | L | 0.17 | |
Weight (approx.) | m | kg | 6 |
Geometric displacement | Vg | cm³/rev | 12 | |
Max. rotation speed | nnom | rpm | 3150 | |
nmax | rpm | 6000 | ||
Outlet flow | qv | L/min | 38 | |
Power | Δp=350 bar | P | kW | 22 |
Δp=400 bar | P | kW | 25 | |
Torque | Δp=350 bar | T | Nm | 67 |
Δp=400 bar | T | Nm | 76 | |
Rotary stiffness | c | kNm/rad | 1.25 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0004 | |
Max. angular acceleration | α | rad/s² | 5000 | |
Case volume | V | L | 0.17 | |
Weight (approx.) | m | kg | 6 |
Geometric displacement | Vg | cm³/rev | 16 | |
Max. rotation speed | nnom | rpm | 3150 | |
nmax | rpm | 6000 | ||
Outlet flow | qv | L/min | 50 | |
Power | Δp=350 bar | P | kW | 29 |
Δp=400 bar | P | kW | 34 | |
Torque | Δp=350 bar | T | Nm | 89 |
Δp=400 bar | T | Nm | 102 | |
Rotary stiffness | c | kNm/rad | 1.59 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0004 | |
Max. angular acceleration | α | rad/s² | 5000 | |
Case volume | V | L | 0.17 | |
Weight (approx.) | m | kg | 6 |
Geometric displacement | Vg | cm³/rev | 22.9 | |
Max. rotation speed | nnom | rpm | 2500 | |
nmax | rpm | 4750 | ||
Outlet flow | qv | L/min | 57 | |
Power | Δp=350 bar | P | kW | 33 |
Δp=400 bar | P | kW | 38 | |
Torque | Δp=350 bar | T | Nm | 128 |
Δp=400 bar | T | Nm | 146 |
Geometric displacement | Vg | cm³/rev | 28.1 | |
Max. rotation speed | nnom | rpm | 2500 | |
nmax | rpm | 4750 | ||
Outlet flow | qv | L/min | 70 | |
Power | Δp=350 bar | P | kW | 41 |
Δp=400 bar | P | kW | 47 | |
Torque | Δp=350 bar | T | Nm | 157 |
Δp=400 bar | T | Nm | 179 | |
Rotary stiffness | c | kNm/rad | 2.93 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0012 | |
Max. angular acceleration | α | rad/s² | 6500 | |
Case volume | V | L | 0.2 | |
Weight (approx.) | m | kg | 9.5 |
Geometric displacement | Vg | cm³/rev | 32 | |
Max. rotation speed | nnom | rpm | 2500 | |
nmax | rpm | 4750 | ||
Outlet flow | qv | L/min | 80 | |
Power | Δp=350 bar | P | kW | 47 |
Δp=400 bar | P | kW | 53 | |
Torque | Δp=350 bar | T | Nm | 178 |
Δp=400 bar | T | Nm | 204 | |
Rotary stiffness | c | kNm/rad | 3.12 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0012 | |
Max. angular acceleration | α | rad/s² | 6500 | |
Case volume | V | L | 0.2 | |
Weight (approx.) | m | kg | 9.5 |
Geometric displacement | Vg | cm³/rev | 45.6 | |
Max. rotation speed | nnom | rpm | 2240 | |
nmax | rpm | 4250 | ||
Outlet flow | qv | L/min | 102 | |
Power | Δp=350 bar | P | kW | 60 |
Δp=400 bar | P | kW | 68 | |
Torque | Δp=350 bar | T | Nm | 254 |
Δp=400 bar | T | Nm | 290 | |
Rotary stiffness | c | kNm/rad | 4.18 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0024 | |
Max. angular acceleration | α | rad/s² | 14600 | |
Case volume | V | L | 0.33 | |
Weight (approx.) | m | kg | 13.5 |
Geometric displacement | Vg | cm³/rev | 56.1 | |
Max. rotation speed | nnom | rpm | 2000 | |
nmax | rpm | 3750 | ||
Outlet flow | qv | L/min | 112 | |
Power | Δp=350 bar | P | kW | 65 |
Δp=400 bar | P | kW | 75 | |
Torque | Δp=350 bar | T | Nm | 313 |
Δp=400 bar | T | Nm | 357 | |
Rotary stiffness | c | kNm/rad | 5.94 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0042 | |
Max. angular acceleration | α | rad/s² | 7500 | |
Case volume | V | L | 0.45 | |
Weight (approx.) | m | kg | 18 |
Geometric displacement | Vg | cm³/rev | 63 | |
Max. rotation speed | nnom | rpm | 2000 | |
nmax | rpm | 3750 | ||
Outlet flow | qv | L/min | 126 | |
Power | Δp=350 bar | P | kW | 74 |
Δp=400 bar | P | kW | 84 | |
Torque | Δp=350 bar | T | Nm | 351 |
Δp=400 bar | T | Nm | 401 | |
Rotary stiffness | c | kNm/rad | 6.25 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0042 | |
Max. angular acceleration | α | rad/s² | 7500 | |
Case volume | V | L | 0.45 | |
Weight (approx.) | m | kg | 18 |
Geometric displacement | Vg | cm³/rev | 80.4 | |
Max. rotation speed | nnom | rpm | 1800 | |
nmax | rpm | 3350 | ||
Outlet flow | qv | L/min | 145 | |
Power | Δp=350 bar | P | kW | 84 |
Δp=400 bar | P | kW | 96 | |
Torque | Δp=350 bar | T | Nm | 448 |
Δp=400 bar | T | Nm | 512 | |
Rotary stiffness | c | kNm/rad | 8.73 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0072 | |
Max. angular acceleration | α | rad/s² | 6000 | |
Case volume | V | L | 0.55 | |
Weight (approx.) | m | kg | 23 |
Geometric displacement | Vg | cm³/rev | 90 | |
Max. rotation speed | nnom | rpm | 1800 | |
nmax | rpm | 3350 | ||
Outlet flow | qv | L/min | 162 | |
Power | Δp=350 bar | P | kW | 95 |
Δp=400 bar | P | kW | 108 | |
Torque | Δp=350 bar | T | Nm | 501 |
Δp=400 bar | T | Nm | 573 | |
Rotary stiffness | c | kNm/rad | 9.14 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0072 | |
Max. angular acceleration | α | rad/s² | 6000 | |
Case volume | V | L | 0.55 | |
Weight (approx.) | m | kg | 23 |
Geometric displacement | Vg | cm³/rev | 106.7 | |
Max. rotation speed | nnom | rpm | 1600 | |
nmax | rpm | 3000 | ||
Outlet flow | qv | L/min | 171 | |
Power | Δp=350 bar | P | kW | 100 |
Δp=400 bar | P | kW | 114 | |
Torque | Δp=350 bar | T | Nm | 594 |
Δp=400 bar | T | Nm | 679 | |
Rotary stiffness | c | kNm/rad | 11.2 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0116 | |
Max. angular acceleration | α | rad/s² | 4500 | |
Case volume | V | L | 0.8 | |
Weight (approx.) | m | kg | 32 |
Geometric displacement | Vg | cm³/rev | 125 | |
Max. rotation speed | nnom | rpm | 1600 | |
nmax | rpm | 3000 | ||
Outlet flow | qv | L/min | 200 | |
Power | Δp=350 bar | P | kW | 117 |
Δp=400 bar | P | kW | 133 | |
Torque | Δp=350 bar | T | Nm | 696 |
Δp=400 bar | T | Nm | 796 | |
Rotary stiffness | c | kNm/rad | 11.9 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0116 | |
Max. angular acceleration | α | rad/s² | 4500 | |
Case volume | V | L | 0.8 | |
Weight (approx.) | m | kg | 32 |
Geometric displacement | Vg | cm³/rev | 160.4 | |
Max. rotation speed | nnom | rpm | 1450 | |
nmax | rpm | 2650 | ||
Outlet flow | qv | L/min | 233 | |
Power | Δp=350 bar | P | kW | 136 |
Δp=400 bar | P | kW | 155 | |
Torque | Δp=350 bar | T | Nm | 893 |
Δp=400 bar | T | Nm | 1021 | |
Rotary stiffness | c | kNm/rad | 17.4 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.022 | |
Max. angular acceleration | α | rad/s² | 3500 | |
Case volume | V | L | 1.1 | |
Weight (approx.) | m | kg | 45 |
Geometric displacement | Vg | cm³/rev | 180 | |
Max. rotation speed | nnom | rpm | 1450 | |
nmax | rpm | 2650 | ||
Outlet flow | qv | L/min | 261 | |
Power | Δp=350 bar | P | kW | 152 |
Δp=400 bar | P | kW | 174 | |
Torque | Δp=350 bar | T | Nm | 1003 |
Δp=400 bar | T | Nm | 1146 | |
Rotary stiffness | c | kNm/rad | 18.2 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.022 | |
Max. angular acceleration | α | rad/s² | 3500 | |
Case volume | V | L | 1.1 | |
Weight (approx.) | m | kg | 45 |
Geometric displacement | Vg | cm³/rev | 200 | |
Max. rotation speed | nnom | rpm | 1550 | |
nmax | rpm | 2750 | ||
Outlet flow | qv | L/min | 310 | |
Power | Δp=350 bar | P | kW | 181 |
Δp=400 bar | P | kW | 207 | |
Torque | Δp=350 bar | T | Nm | 1114 |
Δp=400 bar | T | Nm | 1273 | |
Rotary stiffness | c | kNm/rad | 57.3 | |
Moment of inertia for rotary group | JGR | kg·m² | 0.0353 | |
Max. angular acceleration | α | rad/s² | 11000 | |
Case volume | V | L | 2.7 | |
Weight (approx.) | m | kg | 66 |
Size | Displacement (cm³/rev) | Max. speed (rpm) | Outlet flow (L/min) | Power (Kw) | ||
nnom | nmax | Δp=350 bar | Δp=400 bar | |||
10.3 | 3150 | 6000 | 32 | 19 | 22 | |
12 | 3150 | 6000 | 38 | 22 | 25 | |
16 | 3150 | 6000 | 50 | 29 | 34 | |
22.9 | 2500 | 4750 | 57 | 33 | 38 | |
28.1 | 2500 | 4750 | 70 | 41 | 47 | |
32 | 2500 | 4750 | 80 | 47 | 53 | |
45.6 | 2240 | 4250 | 102 | 60 | 68 | |
56.1 | 2000 | 3750 | 112 | 65 | 75 | |
63 | 2000 | 3750 | 126 | 74 | 84 | |
80.4 | 1800 | 3350 | 145 | 84 | 96 | |
90 | 1800 | 3350 | 162 | 95 | 108 | |
106.7 | 1600 | 3000 | 171 | 100 | 114 | |
125 | 1600 | 3000 | 200 | 117 | 133 | |
160.4 | 1450 | 2650 | 233 | 136 | 155 | |
180 | 1450 | 2650 | 261 | 152 | 174 | |
200 | 1550 | 2750 | 310 | 181 | 207 |
To improve the performance and reliability of your hydraulic system, consider our fixed displacement pump. Contact us today to find the right solution for your application.
At Hilead, every composite hydraulic press is custom-designed to match your specific needs. Beyond molding SMC, BMC, GMT, LET-D, and other thermoset, thermoplastic, and carbon fiber composites, we also offer complete automated system solutions for advanced composite material applications. Our presses are widely used in industries such as marine, automotive, construction, petrochemicals, energy, building materials, power and electrical equipment, telecommunications, rail transit, aerospace, and aviation.
Learn More